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ABSTRACT
Given a Jordan curve I in the complex plane, we describe a polynomial
family which is asymptotically orthonormal on I. The polynomials have some

similarities with the Faber polynomials but are simpler to compute with.

Numerical examples are presented.
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SIGNIFICANCE AND EXPLANATION

Let I be a Jordan curve in the complex plane. We describe a polynomial
family, which is asymptotically orthonormal on I (as the degree of the
polynomials increases), and which is simple to compute. We use the
polynomials to approximate functions f£(z) analytic in the interior of T
and continuous on ['. After some initial calculations, which are independent
of the functions to be approximated, each functions f(z) can be approximated
by an nth degres polynomial in O(n log(n)) operations. Theoretically, one
could use the Faber polynomials for I', but the proposed polynomials are much
simpler to compute with and almost as effective, as is seen by the bound for

the resulting polynomial projection given.

The responsibility for the wording and views expressed in this descriptive
sumary lies with MRC, and not with the author of this report.
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AN ASYNPTOTICALLY ORTHOMORMAL POLYNOMIAL PFAMILY
Il Lothar Reichel
1. INTROOUCTION
Let T be a Jordan curve in the complex plane, and let z = ¢(w) be an analytic
function on |w| > 1, such that ¢ wmaps |wl > 1 onto the exterior of I, with
¢(») = », ¢ can be extended to a continuous bijective map on |w| > 1« The polynomials

we will study are defined by

n=-1 =1
(1.1) pu(:) 1= -‘-; ( n (s - Ncn"/")) + I (s~ 0(0(2"""/“))). ne0,9,2,...,

2c k=0 k=0

Apipa;
&

vhere ¢ denotes the capacity of T.

et
RS

Exe. 1.1. Lst I Dbe the unit circle, and let z = ¢(w) = wv. Then

n~1 n~1
P(l)'l(l (s - o342y g (zs-o
n 2 'ymo k=0

(Zxe1)iv/m, )
.%((“’ 1 + (ln‘ 1)) = ‘II' l\'o.‘,z....,
These are the Faber polynomials for the unit disk. .

Ex. 1.2, Lot T be the ellipss [x + iy, ()2 + ()2 =1}, a> b et a1 &2 ana

4 3= (lz - b2,1/2. Then

(1.2) = ¢lw) = dalw + a2 )
The capacity of T is da. Substitute (1.2), w, = AR nd o = da into (1.1).

e This gives after some simplifications
p,(s) = W' a ™,
These are the Faber polynomials for the ellipse bounded by T, c.f. Curtiss [2]. Por

future reference, we note that

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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(1.3) pn(g) »> 'n, ne+®

if a> 1, or equivalently, if b > 0. [

In section 2, we show that for a large class of boundaries [I' the polynomials
Pp(s) are asymptotically orthonormal with respect to an inner product, c.f. (1.2) and
(1.3)c We use these polynomials to define a bounded projection operator for polynomial
approximation of functions, which are analytic 1nur;£or to T and satisfy certain
smoothness properties on I. In section 3, we show how this projection onto polynomials of
degree < n can be computed in O(n log(n)) operations for each function to be

approximated, provided that some initial calculations independent of the function to

approximate have been carried out. Section 4 contains numerical examples.




2. 9NN PROPERTIRS OF THE POLYWOWIALS

: Let O denote the open interior of T, and let ﬂcbothoooqlmntota.

Iheorem 2.1.
ade a*ly

Assume that —? is continucus on |w| = 1, and that 341 is of bounded variation on
dv dav

{wl =1 for some 3§ > 0. Then

(2.1) ’n(.) - w1 ¢ o(n.j)), n+ e, uniformly for z € nc. where
v is defined by ¢(w) = g .

(2.2) pn(l) = o(n-j-i). ne+e, zg€0, and uniformly for =
belonging to any closed subset of Q.

If ¢ is analyticon |wl = 1, then there is a constant r, 0 < r < 1, such that

p,(s) = v+ olr™), n +®, uniforsly for z €8, where
w is defined by w = {(z).

pn(s) = o(r"). nee, 3¢9, and uniformly for =
belonging to any closed subsst of 03,

Proofs In the proof we make use of results Curtias [2] obtained in his investigation of
the product

1
X (s - ¢le3"VVm),) |

k=0
Curtiss (2], Lemma 1, shows that if £(0) is a 2v-periodic complex valued function of the
real variable ¢, absclutely continucus on the interval 0 < 6 < 2%, and if °k = 2% 1:‘-,

k= 0(1)n, then

9 2% -1
(2.3) Y o)) £oa+on), nee.
X=0 0

3

b ¢ 4 _d;_;_ is absolutely continucus, Curtiss's proof of (2.3) supplemented by integration by
4

parts yields
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=1 29 -j=1
2€0) = [ £(®as+on ), nee.

(2.4) )
k=0 H

aw

Pollowing Curtiss, we introduce

'. = " ; tw
- clw - w)
qlw,w) 3= )
" (v) ’ v v,

where |w| > 1, I;l -1, Let ¥(0,w) 3= l.og(q(o",v))- with a branch of the logarithm
choosen so that w + ¢ is analytic and single valued for |w| > 1, continuous on
jwl = 1 and vanishes as {w| + ®», the Cauchy integral formula yields
2%
.{ Wo,wae =0, [wl >1.

Let °k 1= 2sk/n, k= 0(1)n « 1. Then, with sz = ¢(w),

n=-1 “k
B (= - ¢(e )) =1 1‘! =1 1
(2.5) 9 - (BN ). g ogime .
n,_n i6
c(w - 1) x (]

c(w~-e )

With a suitable branch of the logarithms, we have

n-1 “k
(£l° (z = ¢to n) nf‘ . n?
log = Pw,Q ) = — wWw, 0 )( -0)=
St - 1) =0 "k 2w =0 'ek .l:ﬂ ek
n n1 2%
(2.6) = (I ewoic0  -0)-[ w040 = n () .
x=0 0
Hence
1 n~1 “k n
(2.7) “a B (z=¢(e ")) = (w = 1)(1+ O(Hn(:))). ne+e
c k=0 _

Curtiss (1) considers the case j = 0, and shows that lln(O(v)) = o(1), n + e uniforaly

for |w] > 1. Por 3 > 0, some straightforward modifications of Curtiss's proof, like

g
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replacing (2.3) by (2.4), yields ﬂn“(\'” - o(n.j). n +e uniformly for |w| > 1. If
¢(w) is analytic in a neighborhood of the unit circle, then ¢ is an analytic function
of both its arguments, and |ln(0('”| < Ar™ for some constants A and r, 0<r<1 as
n+ e, uniforaly for |(w| > 1,

Now replace 6, by 6 =0 + f, k= 0(1)n = 1, in (2.5). Then

Y

n-1 i6

-~ - k
1 TR (z-oe )
(2.9) - § q(". )= n n .
k=0 cfw + 1)
and analogously to (2.7) we obtain
1 B8 ";k n
(2.9) 2 R (z=¢9(e ")) =(w + 1)(1 + o(nn(:))). ne+e,

¢ k=0

The average of (2.7) and (2.9) yields (2.1). Also (2.2) follows from results of
Curtiss. Por ¢ of bounded variation on |w| = 1, Curtiss shows that

n~1 “k
(2.10) L x (a-¢te X)) =-14+0hin)), hin) =o(1), n + »,

o® %m0

for any s € 9, and uniformly for s bDelonging to any closed subset of . Again it is
L)

straightforward to show that if —% is of bounded variation for some 3j > 0, then
dw

hi(n) = o(n 3 ‘). If ¢ 1is analytic in a neighborhood of |w| = 1, there are constants

B, v, 0 <r <1, such that |h(n)| < Br"". 1Inspection of Curtiss proof also shows that

1 n=1 uk

(2.11) = 0 (== ¢e
c® x=0

)) =1 +0(hin)), noe,

for any = € 1, uniformly for z belonging to any closed subset of 0. Adding (2.10) and
(2.11) yielas (2.2). ' a
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Let 0.1 (s) denote the inverse map of ¢(w). We introduce the inner product

(2.12) (£,9) 1= 3= [ e(m)gtarlad ()] = [ saengtRIT o] .
r |

wi=1

The bar denotes complex conjugation.

Theorem 2.2,

-+ (2.13) (o mwtr =0, trn, v=¢ta .
s (2.14) (p(x)w™) = 1 .

o

g Proof.
i

.E_: -1 n~-1

i 295 L [ 1 0m-pe®™ ¥Rt = s [ T (en- eV e
SN lwl=1 x=0 twi=1 k=0

'::

¢ being anslytic exterior to |w| = 1, we can replace the integration path by a circle

-

-:: |lwl = R sufficiently large so that ¢ has an expansion

b

-3: (2.16) $w) = cw + a, + a‘v-' + nzv—z * ee0, vl >R

: Substituting (2.16) into (2.15) yields (2.13). (2.14) follows from

Bl k=1

k
(W) = v + v, .
R " ,Z‘.. 3 '
" We will use a Petrov-Galerkin method to compute polynomial approximations. Let
6{®)  denote the Grasmian

:_~ c(n) - [Gul. Gy ™ (p‘(s),vk), 0<k,A¢n, w= 0.1(3) .
.’.-' and let P{?) be the Pourier operator

B rMearg, r e 20w, 0cken, ve .

. Theorem 2.3.

;::; Let f(s) Dbe analytic in @, and have uniformly bounded Fourier coefficients
> P, = (£(s),w"), 3 = ¢(v). Let the projection P, be defined by

. n=1

vy (2,17 Pf= ] ap .,
\.:_‘ 0

o -

RS

.3,'.
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with 8 = (8,8, 0eec,n. )T, a 1= G % ™. men, 1f L2 1 of boundea variation on
2 0%y =1 8 o2

ju) = 3,

(2.18) 'k"k' ke+*e, nd>k.,

Proof. By (2.13), (2.14) G!®) ig an upper triangular matrix with diagonal elements

Gyy ® 1+ The upper triangular elements have by theores 2.1 the form

Gu d ('k * o(':' "‘) - ‘u + °(%). Consider the vectors !(-) = (..,..’"‘-fz‘...‘.n).r'
»'® n

- (r_.r",,...,rn)'. and let the matrix z'™ = tl,“”l be defined by

(»)

YY)

1 'k-" o‘k,jGI-u
Gm,”., k#®j, 0<k,j<m~n
The magnitude of the l;;’ is given by

° o(i') o(-:_ ‘) o(-l ‘) eee o(;-:—").

0 o(--:ﬁ) °(-—-:_z') oee o(n: 7)

(=)

ll(-)l is bounded a8 n+ =, and we can, for each ¢ > 0, select an =m such that

=™ < e wow

(T + '(l))-.-(l) - !.(-) .

(

tet 1'™1_ <4, and assme €< 1. Then

-
.'.(-) - !(-) -} ™ )k!(-) ,

ket
ana

(m) _ ,(m) (m), =t _(m), . (w) c

™ ep ™ e w7 '™ e .

Adding some regularity assumptions on the functions to be approximated, we can bound

(2.19) AR IRALY

r

- IV_ . "
Wt e e e e e e e . e e e T e e e S e =t
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where
lflr = gup |£f(2)]
zel
!!!“r- 2.4,
Let f be analytic on 2, and assume its Fourier coefficients (f(z).v"),
2

we= ¢(z), X=0,1,2,..., form an absolutely convergent series. Let -d-z’ be of bounded

dw

variation on |w| = ¥, Then P, is bounded wrt the norm (2.19).

Proof. We divide the matrix G'™ into 2 parts. For an m < n, let

G

Xy * k=3 or k<=

A= [Akj]' Akj =

[} ’ else .

Let E 1= G'®) - A, Por an arbitrary € > 0, we can select an = so that Bl <c<
for all n, c.f. the proof of theorem 2.3. Using - E, we obtain

T R A N R

) -
[_J [ _J
N RS S R R IR ST L Y S L

1 1

Hence,
[ _J

(2.20) a=a"" Ve a7 (em®ete .

k=1

n~1

sup |

()] €
zel' 0O .k’k

sup u"f' (v® + o <"§' la 11 + o(2)) < a tad
lvley G & T T S x 0 %"

for some constant 4, independent of n. Prom (2.20),
i, <+ o'l .

lr‘fl‘ was assused bounded for all n.

,,,,,
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3. OOMPUTING WITH THE POLYNOMIALS
The proof of theorem 2.3 indicates a computational method for determining the
coefficients of P f in o(n log(n)) operations if the Grammian is known.

1) Determine n FPFourier coefficients b := rnt. This requires 0(n log(n))

operations.
2
a = b. Solutions of the full system requires -g- operations, but we

& only need to solve Aa = b, where A is the submatrix of G(") introduced in the proof

B 2) soive G'

- of theorem 2.3. A can be choosen independently of n. Solving Aa = b requires O(n)

operations.

AR A e

We next turn to the computation of the polynomials. The restriction of the mapping

)
"

function ¢(w) to |w| = 1 is needed, and several numerical methods are available, see

A

Fornberg [3], Gutknecht [5) or Reichel [6). The method [6) ylelds also the capacity of
I's but not knowing the capacity only necessitates oxplicit normalization
(2 (2), (47 (21)%) = 1, k= 0,9,c00,n = 1. We finally note that vhen P f has been
computed and is to be evaluated at many points it might be advantageous to use a
representation which is faster to evaluate than (2.17), like a Newton polynomial

representation.

-9a




4. NUMERICAL EXAMPLES

2
We consider two contours I, one which is analytic, and one for which 9-; has a

dw
jump discontinuity on |w| = 1. All computations have been carried out on a UNIVAC 1100 in
single precision, i.e. with 8 significant digits. The images of the roots of unity, we

determined with approximately 6 significant digits., Let T be the ellipse

{x + iy 1 (22")2 +y2 =1},
Ex. Ei. 3 max |p,, ($(w)) - Wit
{wi=1 -3
5 4.1+10
10 2.401072

Due to rounding errors, we cannot obtain a deviation much smaller than for j = 10.

Ex. E2. Let f£(z) 1= (z + 3)”',

£){z) - £(2)|
3

’ 1
10 : 1.3¢10°

20 3.3010°8

If the error would decrease maximally, see Gaier [4), ch. 1, it would decrease by a factor
2.56-10-3, when 3j is increased from 10 to 20. This is also the case. When j 1is

increased further, rounding errors dominate. s

Ex. E3. Let f£(z) :=/z + 2, where we choose a branch which has a discontinuity on the

negative real axis.

3 ::; I(P’”f)(z) - £(z)|
10 0.176
20 0,121
40 0.079

-10=~
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10
20

40

3
10

3
10

Ex. 82 f£(x) 1= (s + ™!

T T ey ———
FaaSa it et e Y LT e e

- .

The error decreases by a factor close to 7‘-_.

the expected rate of convergence.
2

In the following examples I is a sports ground shaped region obtained by placing a

unit square between 2 unit disk halves.

The error seems to decrease like o(1/n),

LTI T Gl VS A S T S S -2

max |p,, . ($lw)) - Yy
lwl=1 -2
8.86°10
2.8201072
1.2401072
0.61+10"2
n+e, a
:rx I(Pjﬂﬂ(:) - £(z)|
-3
2.4+10
1.0010"° .
Ex. 83 f£(s) s= /s ¢ 2, the same branch as in ex. B3
max (P, _£)(2) - £(x)]|
ser "
0.198
0.137
0.090 .
-‘1-
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